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Abstract. This paper deals with the derivation of non-polynomial solutions to theq-difference
form of the Harper equation. Only quasiclassical approximations proceeding this time to first
and second orders are discussed. The exact non-polynomial zero-energy solution to the above
q-difference equation has also been presented.

1. Introduction

A q-difference formulation of the Harper equation [1] has recently [2] been presented.
One commences by incorporating the group of magnetic translations [3] into the symmetry
structure of the quantum-groupslq(2) [4]. This q-difference equation looks like
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has the meaning of a pertinentq-deformation parameter. The magnetic field per plaquette
is denoted by

8 = 2π
P

Q
(3)

whereP andQ are mutually prime integers. Accordingly,q expresses roots of unity for
which q2Q = 1, which means in turn that the pertinentslq(2)-representations are finite
dimensional [4, 5]. Puttingz = q2n, wheren is a real integer, leads after some steps to the
usual discrete form of the Harper equation viaψn = ψ(q2n) [2].

Thus (1) represents aq-difference approach to Bloch electrons on a two-dimensional
lattice penetrated by a perpendicular magnetic field. Now theq-deformation is an inherent
attribute of the physical description, like theSUq(2)-symmetry of the HeisenbergXXZ
spin chain [6, 7]. In general, theq-parameter exhibits real or imaginary values, so
that the underlying ‘classical’ limit, as for example theXXX spin chain, is implied as
q → 1. Moreover, complexq-values have also been proposed, which leads to a nontrivial
generalization [8, 9].
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So far, (1) has been solved in terms of the Bethe ansatz [2, 10]. The polynomial solutions
obtained in this manner are quite valuable, but they are presented in an implicit form, as
shown, for example, by (5), (6) and (9) in [2]. The explicit zero-energy polynomial solution
has also been written down [11]. However, the derivation of further explicit solutions and/or
approximations remains desirable. We shall then derive the non-polynomial counterpart of
the zero-energy solution mentioned above, which represents the main contribution of this
paper. For this purpose one begins by discussing related quasiclassical approximations.

2. Probing the quasiclassical description

The quasiclassical description of (1) provides useful insights into a better understanding of
exactq-dependent solutions, such as the zero-energy one. Now one has|qH | = 1, so that
in order to perform the quasiclassical description we have to start from the approximation

q = qH ∼= 1+ ε (4)

working forQ� πP , in which one has

ε = i
πP

Q

(
1+ i

πP

2Q

)
(5)

to secondP/Q-order. Using (4), we then have to realize that (1) leads to an infinite number
of differential equations. Indeed, let us consider that

U ≡ −iE =
∞∑
k=1

εkUk (6)

which definitely incorporates the present quasiclassical effects. It is also clear that now
higher-order corrections to the wavefunction are not accounted for. One would then obtain

(1+ z2)ψ ′(z)+ zψ(z) = 1
2U1ψ(z) = −U2ψ(z) (7)

to first and secondε-orders, whereas
1
3z

2(1+ z2)ψ ′′′(z)+ z(1+ 2z2)ψ ′′(z)+ (1+ 3z2)ψ ′(z)+ zψ(z) = U3ψ(z) (8)

works to third ε-order. The primes denote differentiations with respect toz, as usual.
Similar equations can also be written down to higher orders. Next it can easily be verified
that (7) exhibits the solution

ψ(z) = C√
1+ z2

exp
(a

2
arctanz

)
(9)

in whicha is a parameter which remains to be established later in terms of suitable boundary
condition. Then

U1 = −2U2 = a (10)

so that

E = −π a P
Q
+O

(
P 3

Q3

)
. (11)

Unfortunately, starting with (8), (9) does not fulfil higher-order equations. Thus, one
becomes faced with a rather restricted quasiclassical description working to first and second
ε-orders only. It could be emphasized that the accuracy of the quasiclassical description
could eventually be enhanced by resorting to suitable modifications of (1), but such questions
go beyond the immediate scope of this paper. In this general context, it should be noted,
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however, that in order to assure a positive norm, an extra term has to be inserted into (1),
as shown recently [12].

Next we have to remark that imposing a boundary condition such as

ψ(1) = exp(γ π)ψ(−1) (12)

gives in general

a = 4(γ + n) (13)

by virtue of (9), whereγ is a real boundary parameter and wheren denotes an arbitrary
integer. Accordingly, the wavefunction (9) can be normalized within the intervalz ∈
[−1, 1]. It should be remarked that in such a case the normalization integral remains
unchanged undera → −a. In particular, puttingγ = 0 and n = 0 one obtains the
zero-energy solution

ψ(z) = ψ0(z) = C√
1+ z2

= C
∞∑
n=0

(−1)nz2n (2n− 1)!!

(2n)!!
(14)

which exhibits an apparent non-polynomial form. Using the normalization condition∫ +1

−1
ψ∗0 (z)ψ(z) dz = 1 (15)

then givesC = |C| = √2/π , so that the above zero-energy wavefunction becomes well
established.

So far it has been assumed that thez-coordinate exhibits real values. However, complex
z-values on the unit circle such as

z = q2n = exp(2iπnP/Q) (16)

wheren = 0, 1, . . . ,Q, should also be accounted for. Now we have to keep in mind the
fact that the complex conjugation is given byz∗ = 1/z. For convenience we shall then
restrict ourselves to the zero-energy wavefunction (15), which will be rewritten equivalently
as

ψ̃0(z) = C̃√
1+ z2

. (17)

Proceeding in as close a manner as possible, we shall proceed by converting the input
z-integral

I =
∣∣∣∣ ∫ ψ̃∗0 (z)ψ̃0(z) dz

∣∣∣∣ = |C̃|2∣∣∣∣ ∫ z dz

1+ z2

∣∣∣∣ > 0 (18)

into an integral overn, where the integration limits remain to be clarified later. Accounting
for

dz = 2iπ
P

Q
z dn (19)

and transforming then-integral into a summation overn, gives the discretized norm

I → IQ,P = π P
Q
|C̃|2|SQ,P | (20)

where

SQ,P =
Q∑
n=0

1

cos 2nπ P
Q

. (21)
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Choosing, for example,P = 1 then yields|SQ,1| = 1 if Q is an even number, whereas

|SQ,1| =
{
Q+ 1 (Q+ 1)/2= odd

(Q+ 1)/2 (Q+ 1)/2= even
(22)

works for oddQ-numbers. This is a non-trivial result which can be viewed as being
reminiscent to the hierarchical attributes characterizing the spectrum of the original Harper
equation. In this latter respect it should be mentioned that besides the complex WKB
method [13], other quasiclassical descriptions to the original discrete Harper-equation have
been done [14–17]. A suggestive plot concerning theQ-dependence ofSQ,P is presented
in figure 1 forQ ∈ [0, 17] and P = 1. This means thatQ also stands forQ/P . One
remarks the onset of a sequence of discretized scars growing specifically withQ, quite
sharp maxima included.

Using (22) one would then obtain

C̃ =
√

2

π

√
Q

Q+ 1
(23)

for even(Q+ 1)/2 values, so that̃C ∼= C if Q� 1. As a matter of fact, this latter̃C ∼= C
solution is produced effectively by the modified norm

〈ψ̃0|ψ̃0〉mod= π

ln 2

∫ 1

0
ψ̃∗0 (z)ψ̃0(z) dz (24)

which may be useful for subsequentq-deformations. One proceeds in a similar manner in
the other cases.

3. The derivation of the exact zero-energy solution

We are now ready to derive the exact zero-energy non-polynomial solution to (1). Using
the symmetrized Jacksonq-derivative (see, for example, [18–21])

∂qf (z) = f (qz)− f (q−1z)

z(q − q−1)
(25)

one realizes immediately that (1) can be rewritten equivalently as

∂qψ(z)+ z∂q(zψ(z)) = Wψ(z) (26)

where now

E = i

(
q − 1

q

)
W = −2 sin

(
π
P

Q

)
W. (27)

It is also clear that

∂qz
n = [n]qz

n−1 (28)

where the present quantum number reads

[n]q = qn − q−n
q − q−1

= sin(nπP/Q)

sin(πP/Q)
. (29)

As a next step let us insert the (non-polynomial) power series expansion

ψ(z) = ψq(z) =
∞∑
n=0

cnz
n (30)
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Figure 1. TheQ dependence ofSQ,P for Q ∈ [0, 17] andP = 1.

into (26), wherec0 ≡ c0(q) 6= 0. This yields the three-term recurrence relation

Wcn = [n+ 1]qcn+1+ [n]qcn−1. (31)

PuttingW = 0 leads to

c2n+1 = 0 (32)
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and

c2n = (−1)n
[2n− 1]q !!

[2n]q !!
c0 (33)

where

[2n− 1]q !! = [1]q [3]q . . . [2n− 1]q (34)

and

[2n]q !! = [2]q [4]q . . . [2n]q . (35)

It is also understood that

[0]q !! = [−1]q !! = 1. (36)

Thus, the zero-energy non-polynomial wavefunction is given solely by

ψ(0)
q (z) = c0(q)

∞∑
n=0

(−1)n
[2n− 1]q !!

[2n]q !!
z2n (37)

which reproduces the zero-energy form of the ‘classical’ wavefunction (9) asq → 1. Indeed,
one has

ψ
(0)
1 (z) = c0(1)√

1+ z2
= c0(1)

∞∑
n=0

(−1)n
(2n− 1)!!

(2n)!!
z2n (38)

which reproduces precisely (9) as soon asC = c0(1). The absence of a second non-
polynomial solution can also be understood in terms of the classical counterpart of (26),
i.e. of (7), which is apparently a first-order differential equation. We argue that theW 6= 0
case can be treated in a similar manner, but this time the calculations are more involved.
However, our expectation in this latter case is thatψq(z) should be expressed in terms of
a suitableq-deformation of (9).

The q-norm characterizing theq-deformed wavefunction (37) comes from the definite
q-integral∫ b

a

ψ(0)∗
q (z)ψ

(0)
0 (z) dqz = |c0(q)|2

∞∑
n,n′
(−1)n+n

′ [2n− 1]q !![2n′ − 1]q !!

[2n]q !![2n′]q !!

×b
2n−2n′+1− a2n−2n′+1

[2n− 2n′ + 1]q
(39)

where now the complex conjugationz∗ = 1/z has also been accounted for. What then
remains is to choose suitable integration limits. Equation (24) would suggest thez ∈ [0, 1]
choice, but in this case one has some troubles with the power exponent 2n − 2n′ + 1 in
(39), which is able to exhibit unfortunately negative values. We shall then resort to the
q-deformation of equation (15), now forz∗ = 1/z. Inserting the integration limitsa = −1
andb = 1 then gives

b2n−2n′+1 = −a2n−2n′+1 = 1 (40)

which enables us to say that theq-integral (39) is a convergent one. Equivalently, the
q-integral relying on (25), i.e.∫ c

0
f (z) dqz = |qq−1|

∞∑
j=0

c

q2j+1
f

(
c

q2j+1

)
(41)

wherec is an arbitrary real number, can also be applied. At this end it should also be noted
that using (25) opens the way to the derivation of further explicit polynomial solutions, too
[22].
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4. Conclusions

In this paper we succeeded to establish alternative quasiclassical non-polynomial solutions
to theq-difference form of the Harper equation (1). Proceeding quasiclassicaly we found
the discretized norm (20), which exhibits a typical scar behaviour, as shown in figure 1.
It is also clear that the boundary condition (12) reasonably fulfils necessary requirements,
though other proposals may be conceivable. In addition, the exact non-polynomial zero-
energy solution to (1) has been written down. The above results provide a deeper theoretical
understanding of the quantum-mechanical capabilities of (1). We can then say that theq-
difference form of the Harper equation exhibits rich structures going beyond the Bethe
ansatz solution discussed before [2].
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